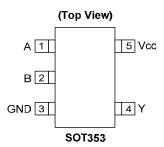


SINGLE 2 INPUT POSITIVE AND GATE

Description

The Advanced Ultra Low Power (AUP) CMOS logic family is designed for low power and extended battery life in portable applications.


The 74AUP1G08 is a single 2-input positive AND gate with a standard push-pull output designed for operation over a power supply range of 0.8V to 3.6V. The device is fully specified for partial power down applications using loff. The loff circuitry disables the output preventing damaging current backflow when the device is powered down. The gate performs the positive Boolean function:

$$Y = \overline{A \bullet B}$$
 or $Y = \overline{A} + \overline{B}$

Features

- Advanced Ultra Low Power (AUP) CMOS
- Supply Voltage Range from 0.8V to 3.6V
- ± 4mA Output Drive at 3.0V
- Low Static power consumption
 - Icc < 0.9µA
- Low Dynamic Power Consumption
 - C_{PD} = 6.3 pF (Typical at 3.6V)
- Schmitt Trigger Action at All Inputs Make the Circuit Tolerant for Slower Input Rise and Fall Time. The hysteresis is typically 250mV at V_{CC} = 3.0V
- I_{OFF} Supports Partial-Power-Down Mode Operation
- ESD Protection Exceeds JESD 22
 - 2000-V Human Body Model (A114-A)
 - Exceeds 1000-V Charged Device Model (C101C)
- Latch-Up Exceeds 100mA per JESD 78, Class II
- Range of Package Options SOT353, DFN1410, and DFN1010
- Leadless packages per JESD30E
 - DFN1010 denoted as X2-DFN1010-6
 - DFN1014 denoted as X2-DFN1014-6
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

(Top View)

Α	1	6	Vcc
В	2]	5	NC
GND	3]	[4	Υ

DFN1410

(Top View)

Α		6	Vcc
В	2]	5	NC
GND	3	4	Υ

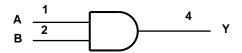
DFN1010

Applications

- Suited for battery and low power needs
- Wide array of products such as:
 - Tablets, E-readers
 - Cell Phones, Personal Navigation / GPS
 - MP3 players ,Cameras, Video Recorders
 - PCs ultrabooks, notebooks, netbooks,
 - Computer peripherals, hard drives, CD/DVD ROM
 - TV, DVD, DVR, set top box

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.


Click here for ordering information, located at the end of datasheet

Pin Descriptions

Pin Name	Function
А	Data Input
В	Data Input
GND	Ground
Y	Data Output
Vcc	Supply Voltage

Logic Diagram

Function Table

Inp	uts	Output
Α	В	Y
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

Absolute Maximum Ratings (Note 4) (@TA = +25°C, unless otherwise specified.)

Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	KV
ESD CDM	Charged Device Model ESD Protection	1	KV
Vcc	Supply Voltage Range	-0.5 to +4.6	V
VI	Input Voltage Range	-0.5 to +4.6	V
Vo	Voltage applied to output in high or low state	-0.5 to V _{CC} +0.5	V
lıĸ	Input Clamp Current V _I < 0	50	mA
lok	Output Clamp Current (V _O < 0)	50	mA
Io	Continuous Output Current (V _O = 0 to V _{CC})	±20	mA
Icc	Continuous Current Through V _{CC}	50	mA
I _{GND}	Continuous Current Through GND	-50	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Note:

Recommended Operating Conditions (Note 5) (@TA = +25°C, unless otherwise specified.)

Symbol	Pa	ırameter	Min	Max	Unit	
Vcc	Operating Voltage		0.8	3.6	V	
VI	Input Voltage		0	3.6	V	
Vo	Output Voltage		0	Vcc	V	
		$V_{CC} = 0.8V$		-20	μA	
		V _{CC} = 1.1V		-1.1		
	High Loyal Output Current	V _{CC} = 1.4V		-1.7		
ЮН	High-Level Output Current	V _{CC} = 1.65V		-1.9	mA	
		0 3.6 0 V _{CC} V _{CC} = 0.8V -20 V _{CC} = 1.1V -1.1 V _{CC} = 1.65V -1.9 V _{CC} = 2.3V -3.1 V _{CC} = 3.0V -4 V _{CC} = 1.1V -1.1 V _{CC} = 1.4V -1.7 V _{CC} = 1.5V -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	-3.1			
		V _{CC} = 3.0V		-4		
		$V_{CC} = 0.8V$		20	μA	
		V _{CC} = 1.1V		1.1		
$V_{1} \text{Input Voltage} \qquad 0 \\ V_{0} \text{Output Voltage} \qquad 0 \\ \\ I_{OH} \text{High-Level Output Current} \begin{array}{c} V_{CC} = 0.8V \\ V_{CC} = 1.1V \\ V_{CC} = 1.4V \\ V_{CC} = 1.65V \\ V_{CC} = 2.3V \\ V_{CC} = 3.0V \\ \end{array}$ $I_{OL} \text{Low-Level Output Current} \begin{array}{c} V_{CC} = 0.8V \\ V_{CC} = 1.4V \\ V_{CC} = 1.4V$	1.7					
	1.9	mA				
		V _{CC} = 2.3V		3.1		
		V _{CC} = 3.0V		4		
Δt/ΔV	Input Transition Rise or Fall Rate	V _{CC} = 0.8V to 3.6V		200	ns/V	
T _A	Operating Free-Air Temperature		-40	+125	°C	

Note: 5. Unused inputs should be held at V_{CC} or Ground.

^{4.} Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	V	T _A = -	+25°C	$T_A = -40^{\circ}C$	C to +85°C	Unit
Symbol	Parameter	rest Conditions	Vcc	Min	Max	Min	Max	Unit
			0.8V to 1.65V	0.80 X V _{CC}		0.80 X V _{CC}		
\/	High-Level Input		1.65V to 1.95V	0.65 X V _{CC}		0.65 X V _{CC}		V
V_{IH}	Voltage		2.3V to 2.7V	1.6		1.6		V
			3.0V to 3.6V	2.0		2.0		
			0.8V to 1.65 V		0.30 X V _{CC}		0.30 X V _{CC}	
V_{IL}	Low-Level Input		1.65V to 1.95V		0.35 X V _{CC}		0.35 X V _{CC}	V
VIL	Voltage		2.3V to 2.7V		0.7		0.7	V
			3.0V to 3.6V		0.9		0.9	
		$I_{OH} = -20\mu A$	0.8V to 3.6V	V _{CC} - 0.1		V _{CC} – 0.1		
		I _{OH} = -1.1mA	1.1V	0.75 X V _{CC}		0.7 X V _{CC}		
		$I_{OH} = -1.7 \text{mA}$	1.4V	1.11		1.03		
VoH High-Level Output Voltage	I _{OH} = -1.9mA	1.65V	1.32		1.3		V	
	Voltage	I _{OH} = -2.3mA	0.01/	2.05		1.97		v
		I _{OH} = -3.1mA	2.3V	1.9		1.85		
		I _{OH} = -2.7mA	0) /	2.72		2.67		
		I _{OH} = -4mA	3V	2.6		2.55		
		I _{OL} = 20μA	0.8V to 3.6 V		0.1		0.1	
		I _{OL} = 1.1mA	1.1V		0.3 X V _{CC}		0.3 X V _{CC}	
		I _{OL} = 1.7mA	1.4V		0.31		0.37	
	High-Level Input	I _{OL} = 1.9mA	1.65V		0.31		0.35	.,
V_{OL}	Voltage	I _{OL} = 2.3mA	0.01/		0.31		0.33	V
		I _{OL} = 3.1mA	2.3V		0.44		0.45	
		$I_{OL} = 2.7 \text{mA}$	0)/		0.31		0.33	
		I _{OL} = 4mA	3V		0.44		0.45	İ
II	Input Current	A or B Input V _I = GND to 3.6V	0V to 3.6V		± 0.1		± 0.5	μA
l _{OFF}	Power Down Leakage Current	V_I or $V_O = 0V$ to 3.6V	0		0.2		0.6	μΑ
ΔI_{OFF}	Delta Power Down Leakage Current	V_I or $V_O = 0V$ to 3.6V	0V to 0.2V		0.2		0.6	μA
Icc	Supply Current	$V_I = GND \text{ or } V_{CC}, I_O = 0$	0.8V to 3.6V		0.5		0.9	μΑ
ΔI _{CC}	Additional Supply Current	One input at V _{CC} -0.6V Other inputs at V _{CC} or GND	3.3V		40		50	μΑ

Electrical Characteristics (cont.) (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	V	T _A = -40°C	to +125°C	Unit
Syllibol	Farameter	rest Conditions	V _{CC}	Min	Max	- Onn
			0.8V to 1.65V	0.80 X V _{CC}		
\ /	High-Level Input		1.65V to 1.95V	0.70 X V _{CC}		V
VIH	Voltage		2.3V to 2.7V	1.6		- V
			3.0V to 3.6V	2.0		
			0.8V to 1.65 V		0.25 X V _{CC}	
VIL	Low-Level input		1.65V to 1.95V		0.30 X V _{CC}	V
VIL	voltage		2.3V to 2.7V		0.7	V
			3.0V to 3.6V		0.9	
		I _{OH} = -20 μA	0.8V to 3.6V	V _{CC} – 0.11		
		I _{OH} = -1.1 mA	1.1V	0.6 X V _{CC}		
		I _{OH} = -1.7 mA	1.4V	0.93		
	High-Level Output	I _{OH} = -1.9 mA	1.65V	1.17		1 .,
V_{OH}	Voltage	I _{OH} = -2.3 mA	2.01	1.77		V
		I _{OH} = -3.1 mA	2.3V	1.67		1
		I _{OH} = -2.7 mA		2.40		1
		I _{OH} = -4 mA	3V	2.30		1
		I _{OL} = 20 μA	0.8 V to 3.6V		0.11	
		I _{OL} = 1.1 mA	1.1V		0.33 X V _{CC}	1
		I _{OL} = 1.7 mA	1.4V		0.41	1
	High-Level Input	I _{OL} = 1.9 mA	1.65V		0.39	1
V_{OL}	Voltage	$I_{OL} = 2.3 \text{ mA}$			0.36	V
		I _{OL} = 3.1 mA	2.3V		0.50	-
		$I_{OL} = 2.7 \text{ mA}$			0.36	-
		$I_{OL} = 4 \text{ mA}$	3V		0.50	-
Iı	Input Current	A or B Input V _I = GND to 3.6V	0V to 3.6V		± 0.75	μA
I _{OFF}	Power Down Leakage Current	V_1 or $V_0 = 0V$ to 3.6V	0		± 3.5	μA
Δl _{OFF}	Delta Power Down Leakage Current	V_I or $V_O = 0V$ to 3.6V	0V to 0.2V		± 2.5	μA
Icc	Supply Current	$V_I = GND \text{ or } V_{CC}, I_O = 0$	0.8V to 3.6V		3.0	μΑ
ΔI _{CC}	Additional Supply Current	Input at V _{CC} -0.6V Other inputs at V _{CC} or GND	3.3V		75	μА

Switching Characteristics

C_L=5pF see Figure 1

Parameter	From Input	TO OUTPUT	V	T _A = +25°C			$T_A = -40$ °C to +85°C		T _A = -40°C to +125°C		Unit
Farameter			V _{CC}	Min	Тур	Max	Min	Max	Min	Max	Ullit
			V8.0		17.0						
			1.2V ± 0.1V	2.4	5.1	10.8	2.1	11.7	2.1	12.9	ns
.	A or B	V	1.5V ± 0.1V	1.6	3.7	6.5	1.5	7.5	1.5	8.3	
t _{pd}	AUID	A OI B	1.8V ± 0.15V	1.3	3.0	5.2	1.3	6.1	1.3	6.7	
			$2.5V \pm 0.2V$	1.1	2.4	4.0	1.0	4.8	1.0	5.3	
			$3.3V \pm 0.3V$	1.0	2.2	3.5	0.9	4.3	0.9	4.8	

C_I=10pF see Figure 1

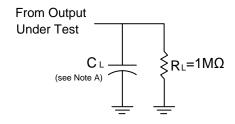
Parameter	From	ТО	V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		T _A = -40°C to +125°C		Unit
Inpu	Input	OUTPUT		Min	Тур	Max	Min	Max	Min	Max	Onit
			V8.0		20.6						
			1.2V ± 0.1V	2.4	6.0	12.5	2.2	13.6	2.2	15.0	ns
	۸ or D	V	1.5V ± 0.1V	2.0	4.3	7.6	1.8	8.9	1.8	9.8	
t _{pd} A or I	A or B	Ť	1.8V ± 0.15V	1.7	3.6	6.1	1.6	7.2	1.6	7.9	
			$2.5V \pm 0.2V$	1.4	2.9	4.7	1.3	5.7	1.3	6.3	
			$3.3V \pm 0.3V$	1.3	2.7	4.2	1.2	4.7	1.2	5.2	

C_L=15pF see Figure 1

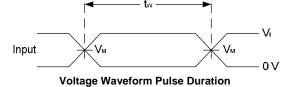
Parameter	From Input	TO OUTPUT	V	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		T _A = -40°C to +125°C		Unit
Farameter			V _{CC}	Min	Тур	Max	Min	Max	Min	Max	Oilit
			V8.0		24.1						
	A or B		1.2V ± 0.1V	3.4	6.8	14.2	3.1	15.7	3.1	17.3	ns
		V	1.5V ± 0.1V	2.3	4.9	8.6	2.1	10.1	2.1	11.2	
t _{pd}		Y	1.8V ± 0.15V	1.9	4.0	6.9	1.8	8.2	1.8	9.0	
			2.5V ± 0.2V	1.7	3.4	5.5	1.6	6.5	1.6	7.2	
			$3.3V \pm 0.3V$	1.5	3.1	4.8	1.5	5.9	1.5	6.5	

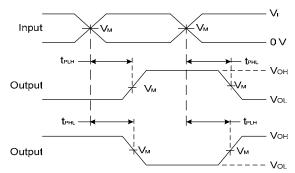
C_L=30pF see Figure 1

Parameter From TO OUTPU	From	то	V	7	A = +25°	C	$T_A = -40^{\circ}C$	to +85°C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		Unit
	OUTPUT	Vcc	Min	TYP	Max	Min	Max	Min	Max	Onic	
t _{pd} A or B			V8.0		34.4						
			1.2V ± 0.1V	4.0	9.1	19.4	4.0	21.8	4.0	24.0	ns
	۸ D	or B Y	1.5V ± 0.1V	3.2	6.4	11.5	2.9	13.6	2.9	15.0	
	AUID		1.8V ± 0.15V	2.6	5.3	9.1	2.4	10.9	2.4	12.1	
			2.5V ± 0.2V	2.3	4.5	7.2	2.2	8.6	2.2	9.5	
			3.3V ± 0.3V	2.1	4.2	6.2	2.1	7.5	2.1	8.3	



Operating and Package Characteristics (@T_A = +25°C, unless otherwise specified.)


	Parameter		est ditions	V _{CC}	Тур	Unit
				0.8V	6.7	pF
	Power Dissipation Capacitance	f = 1MHz No Load		1.2V ± 0.1V	6.6	
				1.5V ± 0.1V	6.5	
C_{pd}				1.8V ± 0.15V	6.5	
				2.5V ± 0.2V	6.4	
				3.3V ± 0.3V	6.3	
Ci	Input Capacitance	$V_i = V_{CC}$ or GND		0V or 3.3V	1.5	pF
		SOT353			371	
θ_{JA}	Thermal Resistance Junction-to- Ambient	X2-DFN1410-6	(Note 6)		430	°C/W
		X2-DFN1010-6			445	
	Thermal Resistance Junction-to- Case	SOT353	(Note 6		143	°C/W
θЈС		X2-DFN1410-6			190	
	Odde	X2-DFN1010-6			250	

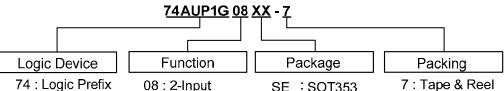

Notes:

Parameter Measurement Information

Vee	Inputs		V		
Vcc	VI	t _r /t _f	V_{M}	C∟	
0.8V	Vcc	≤3ns	V _{CC} /2	5, 10, 15, 30pF	
1.2V ± 0.1V	V _{CC}	≤3ns	V _{CC} /2	5, 10, 15, 30pF	
1.5V ± 0.1V	V _{CC}	≤3ns	V _{CC} /2	5, 10, 15, 30pF	
1.8V ± 0.15V	Vcc	≤3ns	V _{CC} /2	5, 10, 15, 30pF	
2.5V ± 0.2V	V _{CC}	≤3ns	V _{CC} /2	5, 10, 15, 30pF	
3.3V ± 0.3V	V _{CC}	≤3ns	V _{CC} /2	5, 10, 15, 30pF	

Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs

Figure 1. Load Circuit and Voltage Waveforms


Notes: A. Includes test lead and test apparatus capacitance.

- B. All pulses are supplied at pulse repetition rate ≤ 10 MHz.
- C. Inputs are measured separately one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{PD}.

^{6.} Test condition for SOT353, X2-DFN1410-6, and X2-DFN1010-6 devices mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

Ordering Information

AUP: 0.8 V to 3.6 V

AND -Gate

SE SOT353

7: Tape & Reel

Logic Family

FZ4: X2-DFN1410-6 FW4: X2-DFN1010-6

1G: One gate

	Part Number	Bookseys Code	Dookoaina	7" Tape and Reel	
	Fait Number	Package Code	Packaging	Quantity	Part Number Suffix
3	74AUP1G08SE-7	SE	SOT353	3000/Tape & Reel	-7
Pb.,	74AUP1G08FZ4-7	FZ4	X2-DFN1410-6	5000/Tape & Reel	-7
Pb,	74AUP1G08FW4-7	FW4	X2-DFN1010-6	5000/Tape & Reel	-7

Marking Information

(1) SOT353

(Top View)

4

3

XX Y W X

2

XX: Identification code

Y: Year 0~9

<u>W</u>: Week: A~Z: 1~26 week;

a~z: 27~52 week; z represents 52 and 53 week

X: A~Z: Internal code

Part Number	Package	Identification Code
74AUP1G08SE	SOT353	XP

(2) X2-DFN1410-6 and X2-DFN1010-6

(Top View)

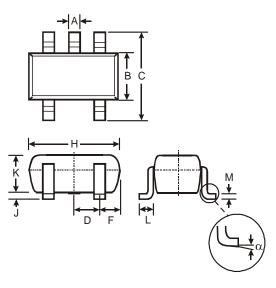
XX XX: Identification Code

Y: Year: 0~9

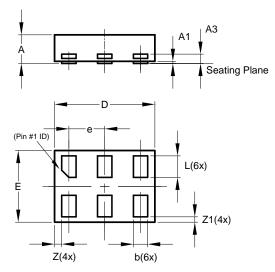
W: Week: A~Z: 1~26 week;

a~z : 27~52 week; z represents

52 and 53 week X: A~Z: Internal code


Part Number	Package	Identification Code
74AUP1G08FZ4	X2-DFN1410-6	XP
74AUP1G08FW4	X2-DFN1010-6	XP

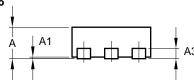
Package Outline Dimensions (All dimensions in mm.)

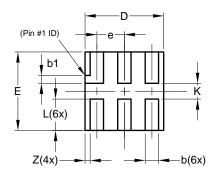

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

(1) SOT353

	SOT353				
Dim	Min	Max	Тур		
Α	0.10	0.30	0.25		
В	1.15	1.35	1.30		
С	2.00	2.20	2.10		
D	0.65 Typ				
F	0.40	0.45	0.425		
Н	1.80	2.20	2.15		
J	0	0.10	0.05		
K	0.90	1.00	1.00		
L	0.25	0.40	0.30		
M	0.10	0.22	0.11		
α	0°	8°	-		
All Dimensions in mm					

(2) X2-DFN1410-6

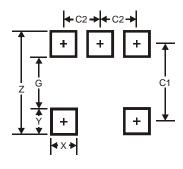

X2-DFN1410-6				
Dim	Min	Max	Тур	
Α		0.40	0.39	
A1	0.00	0.05	0.02	
A3			0.13	
b	0.15	0.25	0.20	
D	1.35	1.45	1.40	
Е	0.95	1.05	1.00	
е		_	0.50	
L	0.25	0.35	0.30	
Z			0.10	
Z 1	0.045	0.105	0.075	
All Dimensions in mm				



Package Outline Dimensions (cont.) (All dimensions in mm.)

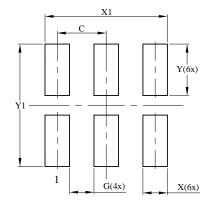
Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

(3) X2-DFN1010-6



	X2-DFN1010-6				
Dim	Min	Max	Тур		
Α		0.40	0.39		
A1	0.00	0.05	0.02		
A3			0.13		
b	0.14	0.20	0.17		
b1	0.05	0.15	0.10		
D	0.95	1.05	1.00		
Е	0.95	1.05	1.00		
е			0.35		
L	0.35	0.45	0.40		
K	0.15		_		
Z			0.065		
All Dimensions in mm					

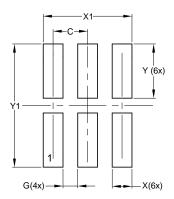
Suggested Pad Layout


Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version

(1) SOT353

Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Y	0.6
C1	1.9
C2	0.65

(2) X2-DFN1410-6


Dimensions	Value (in mm)
С	0.500
G	0.250
Х	0.250
X1	1.250
Y	0.525
Y1	1.250

Suggested Pad Layout (cont.)

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

(3) X2-DFN1010-6

Dimensions	Value (in mm)
С	0.350
G	0.150
Х	0.200
X1	0.900
Y	0.550
Y1	1.250

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2012, Diodes Incorporated

www.diodes.com